
Share on your Social Media

Ansible Tutorial
Published On: July 30, 2024

Ansible Tutorial

Cloud provisioning, application deployment, intra-service
orchestration, and other IT technologies can be automated
using Ansible, an open-source IT engine. Begin your learning
journey as we provide here the basic and advanced Ansible
concepts in this Ansible tutorial.

Download Ansible Tutorial PDF

Introduction to Ansible

One of the best tools used in DevOps culture is Ansible.
Since it doesn’t require any agents or specialized security
infrastructure, it may be easily deployed. The following
topics are covered in this Ansible tutorial:

Overview of Ansible
Understanding if YAML
Understanding of Ad hoc commands
Understanding of Playbooks
Understanding the Roles
Understanding of Variables
Execution and Troubleshooting with Ansible

Ansible Interview Questions

Overview of Ansible

Ansible provides open-source automation that reduces
complexity and works everywhere. You can automate
almost any task with Ansible. Here are a few typical Ansible
usage cases:

Featured
Articles

Want to know
more about

becoming an
expert in IT?

Click Here to Get
Started

100%
Placement
Assurance

Related Courses
at SLA

Related Posts



C and C++ Tutorial
Published On: August 1, 2024

C and C++ Tutorial C is a high-
level, procedural, general-
purpose programming
language. Whereas C++, a…



EASY WAY TO IT JOB



Q
ui

ck
 E

nq
ui

ry





https://www.softlogicsys.in/python-full-stack-developer-course/
https://www.softlogicsys.in/python-full-stack-developer-course/
https://www.softlogicsys.in/python-full-stack-developer-course/
https://www.softlogicsys.in/python-full-stack-developer-course/
https://www.softlogicsys.in/java-full-stack-developer-course/
https://www.softlogicsys.in/java-full-stack-developer-course/
https://www.softlogicsys.in/java-full-stack-developer-course/
https://www.softlogicsys.in/data-science-full-stack-course/
https://www.softlogicsys.in/business-intelligence-and-data-analytics-full-stack-course/
https://www.softlogicsys.in/software-testing-and-qa-architect/
https://www.softlogicsys.in/mean-full-stack-developer-course/
https://www.softlogicsys.in/mern-full-stack-developer-course/
https://www.softlogicsys.in/dot-net-fullstack-course/
https://www.softlogicsys.in/aws-devops-engineer-training/
https://www.softlogicsys.in/azure-devops-training-in-chennai/
https://www.softlogicsys.in/placement-training-institute-in-chennai/
https://www.softlogicsys.in/placement-training-institute-in-chennai/
https://www.softlogicsys.in/reviews/
https://www.softlogicsys.in/placed-students-list/
https://www.softlogicsys.in/placed-students-list/
https://www.softlogicsys.in/corporate-training/
https://www.softlogicsys.in/hire-with-us/
https://www.softlogicsys.in/hire-with-us/
https://www.softlogicsys.in/hire-with-us/
https://www.softlogicsys.in/hire-with-us/
https://www.softlogicsys.in/submit-your-cv/
https://www.softlogicsys.in/careers/
https://www.softlogicsys.in/careers/
https://www.softlogicsys.in/careers/
https://www.softlogicsys.in/careers/
https://www.facebook.com/sharer.php?u=https%3A%2F%2Fwww.softlogicsys.in%2Fansible-tutorial%2F&picture=&title=Ansible%20Tutorial
https://x.com/share?text=Ansible%20Tutorial&url=https%3A%2F%2Fwww.softlogicsys.in%2Fansible-tutorial%2F
https://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Fwww.softlogicsys.in%2Fansible-tutorial%2F&title=Ansible%20Tutorial
https://api.whatsapp.com/send?text=*Ansible%20Tutorial*+https%3A%2F%2Fwww.softlogicsys.in%2Fansible-tutorial%2F
https://pinterest.com/pin/create/button/?url=https%3A%2F%2Fwww.softlogicsys.in%2Fansible-tutorial%2F&media=
https://t.me/share/url?url=https%3A%2F%2Fwww.softlogicsys.in%2Fansible-tutorial%2F&text=Ansible%20Tutorial
https://www.softlogicsys.in/c-and-c-plus-plus-tutorial/
https://www.softlogicsys.in/c-and-c-plus-plus-tutorial/
https://www.softlogicsys.in/c-and-c-plus-plus-tutorial/
https://www.softlogicsys.in/c-and-c-plus-plus-tutorial/
https://www.softlogicsys.in/asp-dotnet-tutorial/
https://www.softlogicsys.in/asp-dotnet-tutorial/
tel:+918681884318
https://api.whatsapp.com/send/?phone=918681884318&text=Hi+I+am+looking+for+more+information+on+your+training+courses&type=phone_number

Reduce duplication and streamline processes
Control and uphold the configuration of the system
Constantly implement sophisticated software
Implement rolling updates with zero downtime.

Ansible automates your tasks via playbooks—simple,
human-readable scripts. In your playbook, you specify the
desired state of a remote or local system. Ansible maintains
the system in that configuration.

Principles of Ansible

Ansible is an automation technology built on the following
standards:

Agent-less architecture: It minimizes maintenance costs
by avoiding the need to add more software to the IT
infrastructure.

Simplicity: Automation playbooks have code that reads like
documentation in simple YAML format. Moreover, Ansible is
decentralized; it accesses remote computers using SSH with
pre-existing OS credentials.

Flexibility and scalability: Scale your automated systems
quickly and easily with a modular design that works with
various network devices, cloud platforms, and operating
systems.

Balancing and Forecastability: Even if the playbook runs
more than once, Ansible does not alter anything when the
system is in the condition your playbook describes.

Ansible Salary

Understanding of YAML

Ansible uses YAML (Yet Another Markup Language) syntax to
represent Ansible playbooks. It is easier for humans to read,
understand, and write than alternative data formats like XML
and JSON.

Every YAML file for Ansible begins with a list. A list of
key-value pairs, sometimes referred to as a “hash” or
“dictionary,” makes up each item. Thus, we must learn
how to create dictionaries and lists in YAML.
All YAML files have the ability to start and finish with —.



ASP DOTNET Tutorial
Published On: July 31, 2024

ASP DOTNET Tutorial Microsoft
created the web framework
known as ASP.NET. It is employed
in…



Artificial Intelligence
Tutorial
Published On: July 30, 2024

Artificial Intelligence Tutorial
Artificial intelligence (AI) is
significant since it enhances
many facets of society…



Appium Testing
Tutorial
Published On: July 30, 2024

Appium Testing Tutorial
Designed to make the UI
automation of many app
platforms easier, Appium…

https://www.softlogicsys.in/asp-dotnet-tutorial/
https://www.softlogicsys.in/artificial-intelligence-tutorial/
https://www.softlogicsys.in/artificial-intelligence-tutorial/
https://www.softlogicsys.in/artificial-intelligence-tutorial/
https://www.softlogicsys.in/artificial-intelligence-tutorial/
https://www.softlogicsys.in/appium-testing-tutorial/
https://www.softlogicsys.in/appium-testing-tutorial/
https://www.softlogicsys.in/appium-testing-tutorial/
https://www.softlogicsys.in/appium-testing-tutorial/

This denotes the beginning and end of a document
and is a component of the YAML format.

Example

A list’s members are all lines that start at the same
indentation level, “-” (a dash and a space):

—

A list of colors

– White

– Orange

– Red

– Black

—

Key-value Pair
The Key-Value pair is the data representation used in YAML.
Additionally, the dictionary is explained in the value pair key.

Example: A Student Record

—

A student record

Bright:

name: Bright

roll no: 10

class: 12th

div: A

—

Representing List

Lists can also be expressed in YAML. Each entry in the list, or
member, must be written on a new line with the same
amount of indentation, beginning with “-” (- and space).

Example: Name of Indian Cities

—

#Name of Cities

Cities:

 – Delhi

 – Chennai

 – Bangalore

 – Hyderabad

—

List Inside Dictionaries

The value of a key is a list; thus, we may use the list that
exists inside dictionaries.

Example: Employee Data

—

Employee Data

Raj:

name: Raj

emp no: 35

dept: Development

skills:

– Python

– DevOps

– Agile

—

List of Directories

We can create a list of directories as follows:

Example: Student Records

—

student records

– Bright:

name: Bright

roll no: 10

class: 12th

div: A

likes:

– Physics

– Chemistry

– Math

– Hari:

 name: Hari

 roll no: 11

class: 12th

div: A

likes:

– Biology

– English

—

YAML employs “|” to incorporate newlines when displaying
multiple lines and “>” to obstruct newlines when displaying
different lines.

We are able to read and alter lengthy lines as a result. The
indentation will be disregarded in both scenarios.
Additionally, boolean (True/false) values can be
represented in YAML without regard to case.

Example: Student Result

—

#a student result

– Bright:

name: Bright

roll no: 10

class: 12th

div: A

likes:

– Physics

– Chemistry

– Math

 result:

 Physics: 70

 Chemistry: 45

Math: 85

Biology: 65

 English: 80

 passed: TRUE

 messageIncludeNewLines: |

 Congratulation!!

 You passed with 79%

 messageExcludeNewLines: >

 Congratulation!!

 You passed with 79%

—

https://www.softlogicsys.in/ansible-course-syllabus/

Download Ansible Syllabus PDF

Understanding of Ad hoc commands

Ad hoc commands are separate commands that can be
used to carry out critical tasks. There is no need to carry out
these commands later.

Due to their one-time use, these ad hoc commands are not
utilized for deployment and configuration maintenance.
Configuration management and deployment are handled
using ansible-playbook.

For example,

You must restart each server in your business. The ad hoc
commands from “/usr/bin/ansible” will be used for this.

Parallelism and Shell Commands

Reboot the server of your business in 12 parallel forks at
once. We must configure SSHagent for a connection to do
this.

$ ssh-agent bash

$ ssh-add ~/.ssh/id_rsa

To do a 12-part parallel reboot for every server in your
organization, ‘abc’ −

$ Ansible abc -a “/sbin/reboot” -f 12

Ansible will execute the above ad hoc commands from the
current user account by default. To modify this behavior,
you must pass the username in Ad-hoc instructions in the
following manner:

$ Ansible abc -a “/sbin/reboot” -f 12 -u username

File Transfer

Ad-hoc commands can be used to SCP (Secure Copy
Protocol) numerous files in parallel across different
workstations.

Transferring a file to numerous computers
or servers

$ Ansible abc -m copy -a “src = /etc/yum.conf dest =

https://www.softlogicsys.in/ansible-course-syllabus/

/tmp/yum.conf”

New directory creation
$ Ansible abc -m file -a “dest = /path/user1/new mode =
777 owner = user1 group = user1 state = directory”

Deleting the entire directory and files

$ Ansible abc -m file -a “dest = /path/user1/new state =
absent”

Managing Packages

You can use the ad-hoc commands for apt and yum. The
following yum commands are ad hoc.

The following command does not update the Yum package;
it checks to see if it is installed.

$ Ansible abc -m yum -a “name = demo-tomcat-1 state =
present”

To verify if the package is not installed, run the following
command.

$ Ansible abc -m yum -a “name = demo-tomcat-1 state =
absent”

The command that follows verifies that the package’s most
recent version is installed.

$ Ansible abc -m yum -a “name = demo-tomcat-1 state =
latest”

Gathering Facts

Playbooks can employ facts to implement conditional
statements.

The following ad-hoc command allows you to find the ad
hoc information for all your facts:

$ Ansible all -m setup

Ansible Project Ideas

Understanding of Playbooks

The foundation of every Ansible use case is playbooks.

These are the files containing the Ansible code. YAML is the
writing format used for playbooks.

One of Ansible’s main functions is playbooks, which instruct
Ansible on what to do. They function similarly to an Ansible
to-do list with a list of tasks.

Playbooks include the steps that the user wants to carry out
on a certain computer. Playbooks will run sequentially.

Playbook Structure

A playbook consists of one or more plays collected together.
Plays are used to organize playbooks. A playbook can
contain more than one play. A play’s purpose is to map a
collection of instructions that are defined against a specific
host.

Since YAML is a strictly typed language, special attention
must be given when creating YAML files. While there are
other YAML editors available, we will stick with a basic editor
like Notepad++.

Simply launch Notepad++, copy and paste the YAML below,
and select YAML as the language (Language → YAML).

Generally, a YAML begins with — three hyphens.

Create Playbook

First, let’s write a sample YAML file. We will go over each
section that is written in a file in YAML format.

—

 name: install and configure DB

 hosts: testServer

 become: yes

 vars:

 oracle_db_port_value : 1521

 tasks:

 -name: Install the Oracle DB

 yum: <code to install the DB>

 -name: Ensure the installed service is enabled and
running

 service:

 name: <your service name>

We are attempting to go over the fundamental syntax of a
playbook in the sample playbook up above. Save the above
text as test.yml in a file. A little caution must be used when
developing YAML syntax, as it must adhere to proper
indentation.

YAML Tags

The descriptions of each tag are provided below.

Tag Name Description

name
This tag gives the Ansible
playbook’s name.

hosts

The host field or tag must
be filled up. It instructs
Ansible on which hosts to
execute the tasks on the
list.

vars

The variables that you can
utilize in your playbook can
be defined using the Vars
tag.

tasks

Every playbook ought to
include assignments or a
list of things that need to be
done. A task list is a set of
things that need to be
done. The task name is
contained in a task field.

Understanding the Roles

For completely independent or interdependent collections
of variables, tasks, files, templates, and modules, roles offer
a framework.

The main method in Ansible for dividing a playbook

into several files is the role. This facilitates the rewriting
of intricate playbooks and makes them easier to write.
By applying the playbook breaking technique, you can
logically separate the playbook into reusable sections.
Although they are little pieces of functionality, roles
must be used within playbooks.
A role cannot be carried out directly. The host to whom
a role will apply is not specified explicitly in roles.
The link between the hosts in your inventory file and the
roles that need to be assigned to them is provided by
top-level playbooks.

Creating a New Role

To establish a new role, you must have the directory
structure for roles.

Role Structure

The file system systematically arranges roles. Although the
default structure can be modified, let’s stay with it for the
time being.

Every role is a self-contained directory tree. The directory
name seen in the /roles directory is the role name.

$ ansible-galaxy -h

Usage

ansible-galaxy
[delete|import|info|init|install|list|login|remove|search|setup]
[–help] [options] …

Role Options

-h, –help: Display this help message and Exit.
-v, –verbose: Verbose mode (-vvv to enable
connection debugging, -vvvv for more)
-version: Display the version number of the program
and abort.

Creating a Role Directory

The role directories will be created as follows:

$ ansible-galaxy init vivekrole

ERROR! The API server (https://galaxy.ansible.com/api/) is
not responding, please try again later.

$ ansible-galaxy init –force –offline vivekrole

– vivekrole was created successfully

$ tree vivekrole/

vivekrole/

├── defaults

│ └── main.yml

├── files ├── handlers

│ └── main.yml

├── meta

│ └── main.yml

├── README.md ├── tasks

│ └── main.yml

├── templates ├── tests │ ├── inventory

│ └── test.yml

└── vars

 └── main.yml

8 directories, 8 files

Utilizing Roles in Playbook

This is the playbook’s code that we wrote for demonstration.
The playbook vivek_orchestrate.yml contains this code. The
hosts have been defined as follows: the two responsibilities,
install-tomcat and start-tomcat, and invoked tomcat-node.

The problem statement is that we need to use Ansible to
deploy a war on a machine.

—

– hosts: tomcat-node

roles:

 – {role: install-tomcat}

 – {role: start-tomcat}

Contents of the directory structure that our playbook is
operating from.

$ ls

ansible.cfg hosts roles vivek_orchestrate.retry
vivek_orchestrate.yml

Every directory has a tasks directory with a main.yml file in it.
The contents of install-tomcat’s main.yml are:

—

#Install vivek artifacts

–

 block:

 – name: Install Tomcat artifacts

 action: >

 yum name = “demo-tomcat-1” state = present

 register: Output

 always:

 – debug:

 msg:

 – “Install Tomcat artifacts task ended with message:

{{Output}}”

 – “Installed Tomcat artifacts – {{Output.changed}}”

The following are the contents of Start Tomcat’s main.yml:

#Start Tomcat

–

 block:

 – name: Start Tomcat

 command: <path of tomcat>/bin/startup.sh”

 register: output

 become: true

 always:

 – debug:

 msg:

 – “Start Tomcat task ended with message:
{{output}}”

 – “Tomcat started – {{output.changed}}”

Breaking a Playbook into Role

Should the roles not be needed, the contents of the
corresponding role’s main.yml can be duplicated within the
playbook.yml file. But roles were developed in order to have
modularity.

A logical entity can be transferred to a role if it can be used
again as a reusable function.

Example

-vvv option for verbose output – verbose output

$ cd vivek-playbook/

This command launches the playbook.

$ sudo ansible-playbook -i hosts vivek_orchestrate.yml –
vvv

—————————————————————–

———————————————————————–

Ansible Training

Understanding of Variables

Playbook variables work in a very similar way to variables
used in any programming language. It facilitates using
variables, allowing you to give them values and use them
throughout the playbook.

The variables can have conditions applied to their values,
and the script can use them appropriately.

Example

– hosts : <your hosts>

vars:

tomcat_port : 8080

You can utilize the variable tomcat_port, which has the
value 8080 assigned to it in the example above, anywhere
in your playbook. The code from one of the roles, install-
tomcat, is as follows.

block:

 – name: Install Tomcat artifacts

 action: >

 yum name = “demo-tomcat-1” state = present

 register: Output

 always:

 – debug:

 msg:

 – “Install Tomcat artifacts task ended with message:
{{Output}}”

 – “Installed Tomcat artifacts – {{Output.changed}}”

https://www.softlogicsys.in/ansible-online-training/

The variable utilized in this case is the output.

Let’s go over each keyword that is utilized in the code above.

Keyword Description

block
Ansible syntax to execute a
given block.

name

The block’s pertinent name;
this is used for logging and
aids in debugging to
determine whether or not
every block was run
correctly.

action

The code that appears next
to the action tag indicates
what needs to be done.
Again, the action is a YAML
keyword that is utilized in
Ansible.

register

The action’s output is
registered using the
register keyword, and the
action’s output is stored in
the variable named output.

always

This is another Ansible
keyword that indicates the
following will always be
carried out.

msg It shows the message.

Usage of Variable: { {output} }
This will retrieve the output variable’s value. It will print the
output variable’s value as well, just like it does in the
message tab.

The variable’s subproperties are also available for use. It is
an example of determining whether the output has
changed by checking {{Output.changed}} and using it
appropriately.

Exception Handling in Playbooks

Any programming language’s exception handling
mechanism is the same in Ansible.

Example

tasks:

 – name: Name of the task to be executed

 block:

 – debug: msg = ‘Just a debug message , relevant for
logging’

 – command: <the command to execute>

 rescue:

 – debug: msg = ‘There was an exception.. ‘

 – command: <Rescue mechanism for the above
exception occurred)

 always:

 – debug: msg = “this will execute in all scenarios.
Always will get logged”

The syntax for handling exceptions is as follows:

The terms “rescue” and “always” are unique to
exception handling.
Code (or anything to be executed on the Unix
computer) is written in blocks.
The execution reaches the rescue block and is carried
out if the command written inside the block feature
fails. Rescue won’t be carried out if the command
under the block feature is error-free.
Always carried out in every situation.
Thus, it is comparable to ‘try, catch, and finally block’
if we compare it to Java.
Block in this context is comparable to the try block,
where you write the code to be run; rescue is
comparable to the catch block; and finally, always, is
comparable to finally.

Loops

The ‘with_items’ syntax is being used to create a loop.

with_items: “{{output.stdout_lines}}” –> output.stdout_lines
provides the output line by line, which we then loop over
using Ansible’s with_items command.

Example

—

#Tsting

– hosts: tomcat-node

 tasks:

 – name: Install Apache

 shell: “ls *.war”

 register: output

 args:

 chdir: /opt/ansible/tomcat/demo/webapps

 – file:

 src: ‘/opt/ansible/tomcat/demo/webapps/{{ item }}’

 dest: ‘/users/demo/vivek/{{ item }}’

 state: link

 with_items: “{{output.stdout_lines}}”

Conditionals

When a particular step needs to be performed in response
to a condition, conditionals are utilized.

—

#Tsting

– hosts: all

 vars:

 test1: “Hello Sam”

 tasks:

 – name: Testing Ansible variable

 debug:

 msg: “Equals”

 when: test1 == “Hello Sam”

Since the test1 variable is equal in this instance, as specified
by the when condition, equals will be printed. We can use
logical AND and OR conditions.

To observe the results, simply change the value of the test1
variable from Hello Sam to, say, Hello World.

Ansible Execution

This is a crucial execution technique in which the playbook
as a whole need not be executed; just one execution is
needed.

Limit Execution by Tasks

We can assign distinct tags to various roles (which have
tasks attached to them). As a result, only the designated
role or task is executed, depending on the tags supplied by
the executor.

Example: Add Tags

– {role: start-tomcat, tags: [‘install’]}}

Commands that help using tags:

ansible-playbook -i hosts <your yaml> –tags “install” -vvv

Only the start-tomcat role will be invoked when using the

aforementioned command. The given tag has case
sensitivity. Make sure that the command is receiving an
exact match.

Limit Execution by Hosts

There are two methods to accomplish the execution of
particular actions on particular hosts. One specifies the
hosts for a given role, determining which particular hosts
the role should be executed on.

– hosts: <A>

 environment: “{{your env}}”

 pre_tasks:

 – debug: msg = “Started deployment.

 Current time is {{ansible_date_time.date}}
{{ansible_date_time.time}} ”

 roles:

 – {role: <your role>, tags: [‘<respective tag>’]}

 post_tasks:

 – debug: msg = “Completed deployment.

 Current time is {{ansible_date_time.date}}
{{ansible_date_time.time}}”

– hosts:

 pre_tasks:

 – debug: msg = “started….

 Current time is {{ansible_date_time.date}}
{{ansible_date_time.time}} ”

 roles:

 – {role: <your role>, tags: [‘<respective tag>’]}

 post_tasks:

 – debug: msg = “Completed the task..

 Current time is {{ansible_date_time.date}}

{{ansible_date_time.time}}”

Running the Playbook

ansible-playbook user.yml –extra-vars “target = “<your
host variable>”

Should {{ target }} be undefined, the playbook remains
inactive. If necessary, a group from the hosts file can also be
passed through. If the extra variables are not supplied,
nothing bad will happen.

Playbook targeting a single host

$ ansible-playbook user.yml –extra-vars “target = <your
hosts variable>” –listhosts

Conclusion

This Ansible tutorial will be helpful for you to understand the
fundamentals. Learn comprehensively with hands-on
exposure in our Ansible training in Chennai.

Share on your Social
Media

Softlogic Academy

Softlogic Systems
KK Nagar [Corporate Office]

No.10, PT Rajan Salai, K.K. Nagar, Chennai –
600 078.
Landmark: Karnataka Bank Building
Phone: +91 86818 84318
Email: enquiry@softlogicsys.in
Map: Google Maps Link

Navigation

Important Links

About Us

Blog Posts

Careers

Contact

Placement Training

Corporate Training

Hire With Us

Job Seekers

SLA’s Recently Placed Students

Reviews

Sitemap

https://www.softlogicsys.in/ansible-training-in-chennai/
https://www.facebook.com/sharer.php?u=https%3A%2F%2Fwww.softlogicsys.in%2Fansible-tutorial%2F&picture=&title=Ansible%20Tutorial
https://x.com/share?text=Ansible%20Tutorial&url=https%3A%2F%2Fwww.softlogicsys.in%2Fansible-tutorial%2F
https://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Fwww.softlogicsys.in%2Fansible-tutorial%2F&title=Ansible%20Tutorial
https://api.whatsapp.com/send?text=*Ansible%20Tutorial*+https%3A%2F%2Fwww.softlogicsys.in%2Fansible-tutorial%2F
https://pinterest.com/pin/create/button/?url=https%3A%2F%2Fwww.softlogicsys.in%2Fansible-tutorial%2F&media=
https://t.me/share/url?url=https%3A%2F%2Fwww.softlogicsys.in%2Fansible-tutorial%2F&text=Ansible%20Tutorial
tel:+918681884318
https://maps.app.goo.gl/H5GK2EjzevzUBMnA7
https://www.softlogicsys.in/about-us/
https://www.softlogicsys.in/blog/
https://www.softlogicsys.in/careers/
https://www.softlogicsys.in/contact/
https://www.softlogicsys.in/placement-training-institute-in-chennai/
https://www.softlogicsys.in/corporate-training/
https://www.softlogicsys.in/hire-with-us/
https://www.softlogicsys.in/submit-your-cv/
https://www.softlogicsys.in/placed-students-list/
https://www.softlogicsys.in/reviews/
https://www.softlogicsys.in/sitemap.xml
https://www.softlogicsys.in/disclaimer/

OMR

No. E1-A10, RTS Food Street
92, Rajiv Gandhi Salai (OMR),
Navalur, Chennai - 600 130.
Landmark: Adj. to AGS Cinemas
Phone: +91 89256 88858
Email: info@softlogicsys.in
Map: Google Maps Link

Courses Social Media Links

    

Review Sources

Disclaimer

Privacy Policy

Terms and Conditions

Python

Software Testing

Full Stack Developer

Java

Power BI

Clinical SAS

Data Science

Embedded

Cloud Computing

Hardware and Networking

VBA Macros

Mobile App Development

DevOps

Google

Trustpilot

Glassdoor

Mouthshut

Sulekha

Justdial

Ambitionbox

Indeed

Software Suggest

Sitejabber

Copyright © 2024 - Softlogic Systems.
All Rights Reserved

SLA™ is a trademark of Softlogic Systems, Chennai.
Unauthorised use prohibited.

tel:+918925688858
https://maps.app.goo.gl/s67uxUtcFVbXDMpz6
https://www.softlogicsys.in/disclaimer/
https://www.softlogicsys.in/privacy-policy/
https://www.softlogicsys.in/terms-and-conditions/
https://www.softlogicsys.in/python-training-in-chennai/
https://www.softlogicsys.in/software-testing-training-in-chennai/
https://www.softlogicsys.in/full-stack-developer-training-in-chennai/
https://www.softlogicsys.in/java-training-in-chennai/
https://www.softlogicsys.in/power-bi-training-in-chennai/
https://www.softlogicsys.in/clinical-sas-training-in-chennai/
https://www.softlogicsys.in/datascience-training-in-chennai/
https://www.softlogicsys.in/embedded-training-in-chennai/
https://www.softlogicsys.in/cloud-computing-training-in-chennai/
https://www.softlogicsys.in/hardware-networking-training-in-chennai/
https://www.softlogicsys.in/vba-macros-training-in-chennai/
https://www.softlogicsys.in/mobile-application-development-training-in-chennai/
https://www.softlogicsys.in/devops-training-in-chennai/
https://www.google.com/search?q=slainstitute&rlz=1C1CHBF_enIN1034IN1034&oq=slainstitute&aqs=chrome..69i57j69i60l4j69i65l3.6143j0j1&sourceid=chrome&ie=UTF-8#lrd=0x3a52678b6ec7b719:0xc0cf6f565e5669c7,1,,,,
https://www.trustpilot.com/review/softlogicsys.in
https://www.glassdoor.co.in/Reviews/Softlogic-Systems-Reviews-E520130.htm/
https://www.mouthshut.com/product-reviews/Softlogic-Systems-Pvt-Ltd-reviews-925594128
https://www.sulekha.com/softlogic-systems-pvt-ltd-kk-nagar-chennai-10331127-contact-address
https://www.justdial.com/Chennai/Softlogic-Systems-Pvt-Ltd-Near-Sivan-Park-K-K-Nagar/044PXX44-XX44-111208140938-Z3M3_BZDET
https://www.ambitionbox.com/reviews/softlogic-systems-reviews
https://in.indeed.com/cmp/Softlogic-Systems/reviews
https://www.softwaresuggest.com/company/softlogic-systems
https://www.sitejabber.com/reviews/softlogicsys.in

